

The Fast Fourier Transform on a Reconfigurable Processor

Gregory W. Donohoe
Institute of Advanced Microelectronics

801 University, SE, Suite 206
Albuquerque, NM 87106

John Purviance
3827 Glenhurst St.

Colorado Springs, CO 80906

Pen-Shu Yeh
NASA GSFC Code 564

Greenbelt, MD 20771-0001

Abstract – This paper describes the implementation of
the Fast Fourier Transform (FFT) on the
Reconfigurable Data Path Processor (RDPP) under
development by the Institute of Advanced
Microelectronics and NASA Goddard Space Flight
Center. The RDPP implements a multi-stage
computational pipeline, optimized for systolic signal
processing applications. We implement the Goertzel
FFT algorithm, which is able to exploit the data path
parallelism of the RDPP. The paper introduces the
RDPP and the Geortzel algorithm, describes a
Fourier Transform Hyperspectral Image data
conversion application, and discusses scaling issues.

I. THE RECONFIGURABLE DATA PATH PROCESSOR

The emerging field of Reconfigurable Computing seeks
to achieve the performance of dedicated hardware with
the flexibility of software through architectures that can
be reconfigured at run time to optimize them for
different computing tasks [5]. The Reconfigurable Data
Path Processor (RDPP) is a reconfigurable
multiprocessing chip being developed for high-
throughput, data-intensive processing tasks aboard
spacecraft. The RDPP contains 16 reconfigurable
processing elements, each with a multiplier, an
arithmetic/logic unit, data path formatting logic, and data
path selection logic, operating on a 24-bit-wide data
path. In addition, there are five 24-bit bi-directional I/O
ports. The RDPP implements a synchronous data flow
computational model, optimized for data-intensive
processing tasks such as signal processing [1]. The
RDPP operates in two phases: (1) configuration, and (2)
execution. In configuration, the processing elements are
programmed for specific processing tasks,
programmable interconnects are configured to form a

processing pipeline, and a run-time program is loaded. In
the execution phase, the RDPP reads and processes data
from an input stream and writes to an output stream.

F
p
p
T
P
si
se
e
o

T
p
fi
in
sy
h
d

T
in
D
e
it
se

IOM1PE4
τ=2τ=2τ=2τ=2

PE0
τ=2τ=2τ=2τ=2

PE3
τ=3τ=3τ=3τ=3

PE2
τ=2τ=2τ=2τ=2

PE1
τ=4τ=4τ=4τ=4

IOM0

Input

Output

IOM1PE4
τ=2τ=2τ=2τ=2

PE0
τ=2τ=2τ=2τ=2

PE3
τ=3τ=3τ=3τ=3

PE2
τ=2τ=2τ=2τ=2

PE1
τ=4τ=4τ=4τ=4

IOM0

Input

Output

Fig. 1: Example RDPP pipeline.
ig. 1 illustrates a data pipeline implemented with five
rocessing elements (PEs), an input port, and an output
ort. τ represents the processing delay through a PE.
his example has a processing fork at PE1, and a join at
E4. Both the top and bottom forks execute
multaneously. PE4 performs conditional data path
lection on a clock-cycle basis, selecting the output of

ither PE2 or PE3, as appropriate, to pass on to the
utput port.

he data flow model is very efficient for many signal
rocessing tasks, such as finite impulse response (FIR)
lters, which accept data sequentially, but internally are
herently parallel, and so are naturally suited to a
stolic pipeline. The Fast Fourier Transform does not

ave these properties, and implementing it in a pipelined
ata path processor presents a special set of challenges.

II. THE FAST FOURIER TRANSFORM

he Discrete Fourier Transform (DFT) is widely used in
strument data processing. The ability to execute the
FT quickly in an embedded system would greatly

nhance its usefulness in spacecraft data processing. In
s direct form, the Discrete Fourier Transform of a data
quence of length N is computed by:

∑
−

=
=

1

0
][][

N

n

kn
NWnxkX (1)

where n is a time sample, k is a frequency bin, and
Nj

N eW /2π−= , n=0,1,…N-1, k=0, 1,…N-1. {x[n]} is
the set of input data samples, and {X[k]} is the set of
complex-valued Fourier coefficient, i.e., the transform.
Direct computation of the DFT on a sequence of length
N requires)(2NΟ complex multiplies and additions.
Each complex multiply requires four real multiplies and
three additions; a complex multiply-accumulate (MAC)
is about four times as costly as a real-valued MAC.

The famous Cooley-Tukey Fast Fourier Transform
(FFT) algorithm employs a divide-and-conquer approach
to computing the DFT. It minimizes the number of
multiply-accumulate operations, enabling the DFT to be
computed with)log(NNΟ complex MACs. The
Cooley-Tukey algorithm computes the FFT on an entire
block of data; the number of data points must be a
composite number, i.e., mN 2= , where m is an integer.
(If the number of samples is not a composite number, it
must be “padded”, or extended to a composite number.)
This approach dramatically reduces the number of
arithmetic operations, and is admirably suited to
execution on random-access, sequential machines
including Digital Signal Processors (DSPs). It requires
complex data shuffling, however, and the entire
sequence must be available at once, which makes it
difficult to parallelize. Fig. 2 shows a data flow diagram
for the Cooley-Tukey algorithm.

III. The Geortzel Algorithm

Another approach to computing the FFT is the Goertzel
algorithm, which offers some advantages for
computation on a pipelined machine. The Goertzel
algorithm formulates the DFT as a recursive filter,
computing the Fourier coefficient in the individual
frequency bins independently. It does not require

simultaneous access to the entire signal array, but can
accept the input signal samples sequentially.

Table 1 summarizes the important differences between
the two approaches.

Cooley-Tukey Goertzel

)log(NNΟ complex
multiply-accumulates.

O(N2) real multiply-
accumulates.

Block computation. Point computation.
N must be a composite
number (N=2m).

N is arbitrary.

Butterfly network. Small recursive loop.
Complex, multi-step data
dependencies.

Coefficients computed
independently.

Difficult to parallelize. Easy to parallelize.

To develop the Goertzel algorithm, we observe that

1=−kN
NW . With this, we can rewrite (1) as

)(1

0
][][l

l

l −−
−

=
∑= Nk

N

N
WxkX (2)

This has the form of a convolution of the input sequence
with the sequence 0, ≥− nW kn

N , which defines a digital
filter with the transfer function:

11
1)(

−−−
=

zW
zH

k
N

k (3)

which is easily implemented as a one-pole recursive
filter with complex coefficients. This requires N complex
multiply-accumulates, or 4N real MACs, for each point
in the transform that we compute. To compute the
complete the transform, we need 2N complex multiply-
accumulates.

We can replace the complex MACs with real-valued
operations by replacing the complex-valued one-pole
filter with a two-pole recursive filter with real
coefficients, one of which is –1. We define an
intermediate variable vk[n]:

)2()1()/2cos(2][][−−−+= nvnvnknxnv kkk π (4)

for 10 −≤≤ Nn . If we require a complex-valued result,
then we compute the final result with a single complex
multiply and a subtraction after running the real-valued
filter for N iterations:

]1[][][−−= NvWNvkX k
k
Nk (5)

If, on the other hand, we only need the magnitude of the
transform, then we merely stop after N iterations of the
filter, and]1[][|][| −−= NvNvkX kk . Fig. 3 below

t0 t1 t2 t3

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

In
pu

t S
am

pl
es

D
iscrete Fourier Transform

t0 t1 t2 t3

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

In
pu

t S
am

pl
es

D
iscrete Fourier Transform

Fig. 2: Flow diagram for Cooley-Tukey FFT. ti are
time steps.

shows the data flow diagram for the Goertzel algorithm.
A more detailed development is found in [2].

IV. THE FOURIER TRANSFORM HYPERSPECTRAL IMAGER
EXAMPLE

We now examine the Goertzel algorithm running the
RDPP for a Fourier Transform Hyperspectral Imager
(FTHSI). The system used in this study is the Hypercam
airborne imager developed by Kestrel Corporation. The
specifications are essentially identical to those flown in
the FTHSI aboard the Air Force Mighty Sat II.1 satellite
[3,4]. This is a push-broom system which images a
single line through a Sagnac interferometer. The
interferometer converts a one-dimensional line of data to
a two-dimensional image: the horizontal dimension
represents the spatial extent of the image (pixels), and
the vertical dimension is the Fourier transform of the
spectral intensity. The image is captured by a focal plane
array and digitized. In order to form a spectral image, we
must take the magnitude of the Inverse Discrete Fourier
Transform (IDFT) of each column. (The computation of
Inverse DFT is identical to the forward transform, except
that k

NW in (1) is replaced by k
NW −).

The system records a single interferogram in 512 pixels.
Before taking the IDFT, the interferogram is appodized
and cropped to 256 pixels. By a well-known property of
the IDFT of a real-valued sequence, the resulting
spectrum is symmetrical, with the right half a mirror
image of the left half. Thus, only 128 pixels of actual
transform data are required.

The RDPP requires two processing elements (PEs) to
compute one Fourier magnitude coefficient using the
Goertzel algorithm. Since the RDPP has 16 PEs, we can
compute up to 8 Fourier coefficients in parallel, on one
pass through the data. All of the PE pairs require the
same data input, so only one of the RDPP’s 5 bi-
directional I/O ports is required for input data.

The procedure compute the Goertzel FFT with a single
RDPP is:

1. Configuration: configure 8 recursive filters.
Load each of the filters with the filter
coefficient, 2cos(πk/64), corresponding to this
frequency bin, k.

2. Execution: Feed the input sequence into the
RDPP, running the RDPP 128 times.

3. Termination. Halt the RDPP and read out each
of the 8 results.

We repeat this process 15 more times, each time loading
a different set of filter coefficients for the new values of
k. The processing speed of an RDPP PE is not yet
known. However, if we assume that one iteration
through the filter requires 50 ns, then we can compute 8
FFT samples in 6.4 µsec, plus configuration and read-out
time, or an entire sequence of 128 samples in about 200
milliseconds. If high speed is essential, we can assemble
a bank of up to 16 RDPP chips in parallel, and compute
the entire 128-sample FFT in tens of microseconds.

Recall that the RDPP implements a 24-bit-wide, fixed-
point data path, with data-path-formatting elements
incorporated into each processing element. The Kestrel
FTHSI digitizes the signal to only 12 bits, but for this
analysis we will assume the more challenging case of 16
bit data. To compute each Discrete Fourier component,
we need to run the filter 128 times. We scale the filter
coefficients,)/2cos(2 Nkπ , to be less than 1; this
guarantees the stability of our filter. We choose a format
so that there is 1 sign bit and 16 fraction bits, leaving 7
integer bits, which are all zero.

Each 24-bit multiply produces a 48-bit product, which is
then scaled back to 24 bits. Each addition has the
potential to generate a carry out of the fraction field, and
add 1 to the integer field. In the worst case, after
processing 128 samples, the integer field can hold a
value of up to 127, which fits in the 7 bit integer field
without overflow. Fig. 4 shows the structure of the filter
loop for the FTHSI application.

Z-1

Z-1)/2cos(2 Nkπ

)(nx)(nvk ky

-1

-1

128 iterations of
recursive filter loop

Subtract last two
samples

Z-1Z-1

Z-1Z-1)/2cos(2 Nkπ)/2cos(2 Nkπ

)(nx)(nx)(nvk)(nvk kyky

-1

-1

128 iterations of
recursive filter loop

Subtract last two
samples

Fig. 4: Filter structure for the FTHSI.
x(0), x(1), x(2)…X(N-1)

Input Samples D
iscrete Fourier Transform

X[0]

X[1]

X[2]

X[3]

X[N-1]

Loop N times

Fig. 3: Goertzel DFT data flow.

V. CONCLUSION
Reconfigurable computing based on reconfigurable
systolic pipelines can significantly speed up many signal
processing applications. The familiar Cooley-Tukey
form of the FFT requires only)log(NNΟ complex
multiply-accumulate operations, but because of its
block-structured nature and intricate interconnect
patterns, does not map well onto a systolic array. The
Goertzel FFT algorithm can be formulated as a bank of
recursive filters, which map neatly onto a data flow
architecture, requiring)(2NΟ real-valued multiply-
accumulates.

Implemented on the 24-bit Reconfigurable Data Path
Processor, Geortzel algorithm will enable Fourier
Transform Hyperspectral Imager data conversion on an
instrument such as the Kestrel Hypercam, processing a
16-bit data stream without numerical error due to
overflow. By ganging 16 RDPP processor chips in
parallel, the FTHSI data conversion can be completed in
a few tens of microseconds.

REFERENCES

[1] G.W. Donohoe and P.-S. Yeh, “A low power
reconfigurable processor”, Proc. IEEE Aerospace
Conference, Big Sky, MT, March 9-16, 2002.

 [2] [MITRA98] Mitra, Sanjit K., Digital Signal
Processing: a Computer-based Approach, McGraw-Hill,
1998.

[3] Otten, L. John III, Eugene W. Butler, J. Bruce Rafert,
R. Glenn Sellar, “The design of an airborne Fourier
transform visible hyperspectral imaging system for light
aircraft environmental remote sensing”, Imaging
Spectrometry, SPIE Vol. 2480, April 1995.

[4] Otten, L. John III, Andrew D. Meigs, R. Glenn
Sellar, “Calibration and performance of the airborne
Fourier transform visible hyperspectral imager
(FTHSI)”, Proc. Second International Airborne Remote
Sensing Conference and Exhibition, San Francisco, CA,
24-27 June, 1996.

[5] J. Villaseñor and W.H. Mangione-Smith,
“Configurable Computing”, Scientific American, June,
1997.

	John Purviance
	Pen-Shu Yeh
	I. The Reconfigurable Data Path Processor
	II. The Fast Fourier Transform
	III. The Geortzel Algorithm
	Goertzel

	IV. The Fourier Transform Hyperspectral Imager Example
	V. Conclusion
	References

